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Preface

This text is intended for a one or two-semester undergraduate course in abstract algebra.
Traditionally, these courses have covered the theoretical aspects of groups, rings, and fields.
However, with the development of computing in the last several decades, applications that
involve abstract algebra and discrete mathematics have become increasingly important,
and many science, engineering, and computer science students are now electing to minor in
mathematics. Though theory still occupies a central role in the subject of abstract algebra
and no student should go through such a course without a good notion of what a proof is, the
importance of applications such as coding theory and cryptography has grown significantly.

Until recently most abstract algebra texts included few if any applications. However,
one of the major problems in teaching an abstract algebra course is that for many students it
is their first encounter with an environment that requires them to do rigorous proofs. Such
students often find it hard to see the use of learning to prove theorems and propositions;
applied examples help the instructor provide motivation.

This text contains more material than can possibly be covered in a single semester.
Certainly there is adequate material for a two-semester course, and perhaps more; however,
for a one-semester course it would be quite easy to omit selected chapters and still have a
useful text. The order of presentation of topics is standard: groups, then rings, and finally
fields. Emphasis can be placed either on theory or on applications. A typical one-semester
course might cover groups and rings while briefly touching on field theory, using Chapters 1
through 6, 9, 10, 11, 13 (the first part), 16, 17, 18 (the first part), 20, and 21. Parts of
these chapters could be deleted and applications substituted according to the interests of
the students and the instructor. A two-semester course emphasizing theory might cover
Chapters 1 through 6, 9, 10, 11, 13 through 18, 20, 21, 22 (the first part), and 23. On
the other hand, if applications are to be emphasized, the course might cover Chapters 1
through 14, and 16 through 22. In an applied course, some of the more theoretical results
could be assumed or omitted. A chapter dependency chart appears below. (A broken line
indicates a partial dependency.)
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Though there are no specific prerequisites for a course in abstract algebra, students
who have had other higher-level courses in mathematics will generally be more prepared
than those who have not, because they will possess a bit more mathematical sophistication.
Occasionally, we shall assume some basic linear algebra; that is, we shall take for granted an
elementary knowledge of matrices and determinants. This should present no great problem,
since most students taking a course in abstract algebra have been introduced to matrices
and determinants elsewhere in their career, if they have not already taken a sophomore or
junior-level course in linear algebra.

Exercise sections are the heart of any mathematics text. An exercise set appears at the
end of each chapter. The nature of the exercises ranges over several categories; computa-
tional, conceptual, and theoretical problems are included. A section presenting hints and
solutions to many of the exercises appears at the end of the text. Often in the solutions
a proof is only sketched, and it is up to the student to provide the details. The exercises
range in difficulty from very easy to very challenging. Many of the more substantial prob-
lems require careful thought, so the student should not be discouraged if the solution is not
forthcoming after a few minutes of work.

Ideally, students should read the relavent material before attending class. Reading ques-
tions have been added to each chapter before the exercises. To prepare for class, students
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should read the chapter before class and then answer the section’s reading questions to
prepare for the class.

There are additional exercises or computer projects at the ends of many of the chapters.
The computer projects usually require a knowledge of programming. All of these exercises
and projects are more substantial in nature and allow the exploration of new results and
theory.

Sage (sagemath.org?) is a free, open source, software system for advanced mathematics,
which is ideal for assisting with a study of abstract algebra. Sage can be used either on
your own computer, a local server, or on CoCalc (cocalc.com®). Robert Beezer has written
a comprehensive introduction to Sage and a selection of relevant exercises that appear at
the end of each chapter, including live Sage cells in the web version of the book. All of the
Sage code has been subject to automated tests of accuracy, using the most recent version
available at this time: SageMath Version 9.6 (released 2022-05-15).

Thomas W. Judson
Nacogdoches, Texas 2022

2sagemath.org
3cocalc.com
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1

Preliminaries

A certain amount of mathematical maturity is necessary to find and study applications
of abstract algebra. A basic knowledge of set theory, mathematical induction, equivalence
relations, and matrices is a must. Even more important is the ability to read and understand
mathematical proofs. In this chapter we will outline the background needed for a course in
abstract algebra.

1.1 A Short Note on Proofs

Abstract mathematics is different from other sciences. In laboratory sciences such as chem-
istry and physics, scientists perform experiments to discover new principles and verify theo-
ries. Although mathematics is often motivated by physical experimentation or by computer
simulations, it is made rigorous through the use of logical arguments. In studying abstract
mathematics, we take what is called an axiomatic approach; that is, we take a collection
of objects & and assume some rules about their structure. These rules are called axioms.
Using the axioms for S, we wish to derive other information about S by using logical argu-
ments. We require that our axioms be consistent; that is, they should not contradict one
another. We also demand that there not be too many axioms. If a system of axioms is too
restrictive, there will be few examples of the mathematical structure.

A statement in logic or mathematics is an assertion that is either true or false. Consider
the following examples:

e 3+56—13+8/2.

o All cats are black.

e 2+3=5.

e 2x = 6 exactly when x = 4.

e If ax? + bz +c =0 and a # 0, then

_ —bE Vb —dac

2a

X

o 3 — 422+ 51— 6.

All but the first and last examples are statements, and must be either true or false.
A mathematical proof is nothing more than a convincing argument about the accuracy
of a statement. Such an argument should contain enough detail to convince the audience; for
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instance, we can see that the statement “2x = 6 exactly when x = 4” is false by evaluating
2 - 4 and noting that 6 # 8, an argument that would satisfy anyone. Of course, audiences
may vary widely: proofs can be addressed to another student, to a professor, or to the
reader of a text. If more detail than needed is presented in the proof, then the explanation
will be either long-winded or poorly written. If too much detail is omitted, then the proof
may not be convincing. Again it is important to keep the audience in mind. High school
students require much more detail than do graduate students. A good rule of thumb for an
argument in an introductory abstract algebra course is that it should be written to convince
one’s peers, whether those peers be other students or other readers of the text.

Let us examine different types of statements. A statement could be as simple as “10/5 =
2;” however, mathematicians are usually interested in more complex statements such as “If
p, then ¢,” where p and ¢ are both statements. If certain statements are known or assumed
to be true, we wish to know what we can say about other statements. Here p is called
the hypothesis and ¢ is known as the conclusion. Consider the following statement: If
ax? +bx +c=0and a # 0, then

. —b+ Vb2 —4ac

2a

The hypothesis is az? + bz + ¢ = 0 and a # 0; the conclusion is

—b+Vb? — dac
2a '

xr =

Notice that the statement says nothing about whether or not the hypothesis is true. How-
ever, if this entire statement is true and we can show that az? + bx + ¢ = 0 with a # 0 is
true, then the conclusion must be true. A proof of this statement might simply be a series
of equations:

ar’ +br+c=0

9 b &
"+ -r=——
a a

NCROE
a 2a 2a a
($+b>2: b? — dac
2a 4q?

b Vb —dac

"% T T 2a
—b+ Vb2 —4dac
T = )
2a

If we can prove a statement true, then that statement is called a propesition. A propo-
sition of major importance is called a theorem. Sometimes instead of proving a theorem
or proposition all at once, we break the proof down into modules; that is, we prove several
supporting propositions, which are called lemmas, and use the results of these propositions
to prove the main result. If we can prove a proposition or a theorem, we will often, with
very little effort, be able to derive other related propositions called corollaries.

Some Cautions and Suggestions

There are several different strategies for proving propositions. In addition to using different
methods of proof, students often make some common mistakes when they are first learning
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how to prove theorems. To aid students who are studying abstract mathematics for the
first time, we list here some of the difficulties that they may encounter and some of the
strategies of proof available to them. It is a good idea to keep referring back to this list as
a reminder. (Other techniques of proof will become apparent throughout this chapter and
the remainder of the text.)

e A theorem cannot be proved by example; however, the standard way to show that a
statement is not a theorem is to provide a counterexample.

¢ Quantifiers are important. Words and phrases such as only, for all, for every, and for
some possess different meanings.

e Never assume any hypothesis that is not explicitly stated in the theorem. You cannot
take things for granted.

e Suppose you wish to show that an object exists and is unique. First show that there
actually is such an object. To show that it is unique, assume that there are two such
objects, say r and s, and then show that r = s.

e Sometimes it is easier to prove the contrapositive of a statement. Proving the state-
ment “If p, then ¢” is exactly the same as proving the statement “If not ¢, then not
p.”

o Although it is usually better to find a direct proof of a theorem, this task can some-
times be difficult. It may be easier to assume that the theorem that you are trying
to prove is false, and to hope that in the course of your argument you are forced to
make some statement that cannot possibly be true.

Remember that one of the main objectives of higher mathematics is proving theorems.
Theorems are tools that make new and productive applications of mathematics possible. We
use examples to give insight into existing theorems and to foster intuitions as to what new
theorems might be true. Applications, examples, and proofs are tightly interconnected—
much more so than they may seem at first appearance.

1.2 Sets and Equivalence Relations

Set Theory

A set is a well-defined collection of objects; that is, it is defined in such a manner that we
can determine for any given object x whether or not x belongs to the set. The objects that
belong to a set are called its elements or members. We will denote sets by capital letters,
such as A or X; if a is an element of the set A, we write a € A.

A set is usually specified either by listing all of its elements inside a pair of braces or
by stating the property that determines whether or not an object x belongs to the set. We
might write

X ={z1,29,...,2,}

for a set containing elements x1, o, ..., T, or
X = {x: x satisfies P}

if each x in X satisfies a certain property P. For example, if F is the set of even positive
integers, we can describe E by writing either

E={2,4,6,...} or E ={z:xisan even integer and x > 0}.



CHAPTER 1. PRELIMINARIES 4

We write 2 € F when we want to say that 2 is in the set F, and —3 ¢ E to say that —3 is
not in the set E.
Some of the more important sets that we will consider are the following;:
N = {n : n is a natural number} = {1,2,3,...};
Z ={n:nisaninteger} = {...,—1,0,1,2,...};
Q = {r : r is a rational number} = {p/q : p,q € Z where q # 0};
R = {z : x is a real number};

C ={z: z is a complex number}.

We can find various relations between sets as well as perform operations on sets. A set
A is a subset of B, written A C B or B D A, if every element of A is also an element of B.
For example,
{4,5,8} € {2,3,4,5,6,7,8,9}

and
NcZcQcRcC.

Trivially, every set is a subset of itself. A set B is a proper subset of a set A if B C A but
B # A. If A is not a subset of B, we write A ¢ B; for example, {4,7,9} ¢ {2,4,5,8,9}.
Two sets are equal, written A = B, if we can show that A C B and B C A.

It is convenient to have a set with no elements in it. This set is called the empty set
and is denoted by (). Note that the empty set is a subset of every set.

To construct new sets out of old sets, we can perform certain operations: the union
AU B of two sets A and B is defined as

AUB={z:x€ Aorx € B};
the intersection of A and B is defined by
ANB={z:z € Aand z € B}.
If A={1,3,5} and B ={1,2,3,9}, then
AUB=1{1,2,3,5,9} and ANB={1,3}.

We can consider the union and the intersection of more than two sets. In this case we write

LnJAi:AlLJ...UAn

i=1
and
n
(Ai=Ain...n4,
i=1
for the union and intersection, respectively, of the sets Aq,..., A,.

When two sets have no elements in common, they are said to be disjoint; for example,
if F/ is the set of even integers and O is the set of odd integers, then E and O are disjoint.
Two sets A and B are disjoint exactly when AN B = ().

Sometimes we will work within one fixed set U, called the universal set. For any set
A C U, we define the complement of A, denoted by A’, to be the set

A'={z:2xeUandz¢ A}
We define the difference of two sets A and B to be
A\B=ANB' ={z:2€ Aand z ¢ B}.
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Example 1.1 Let R be the universal set and suppose that

A={reR:0<2z <3} and B={zreR:2<x <4}
Then

ANB={rzeR:2<z <3}

AUB={zeR:0<z <4}

A\B={zeR:0<z <2}
Al={reR:z<0or x> 3}

Proposition 1.2 Let A, B, and C be sets. Then
1. AUA=A,  ANA=A, and A\ A=0;

2. AUD=Aand AND=1(;

3. AU(BUC)=(AUB)UC and AN(BNC)=(AnB)NC;
J. AUB=BUAand ANB = BN A;

5. AU(BNC)=(AUB)N(AUC);

6. AN(BUC)=(ANB)U(ANC).
Proor. We will prove (1) and (3) and leave the remaining results to be proven in the

exercises.
(1) Observe that

AUA={x:x € Aorzc A}
={zx:x e A}
=A

and

ANA={z:xz € Aand z € A}
={zx:xe€ A}
= A.
Also, ANA=ANA =0.
(3) For sets A, B, and C,

AUBUC)=AU{z:x€BorxecC}
={zx:x€AorzeB, orxeC}
={z:z€Aorxe B}UuC
=(AUB)UC.

A similar argument proves that AN (BNC)=(ANnB)NC. [ |
Theorem 1.3 De Morgan’s Laws. Let A and B be sets. Then
1. (AUB) =A'NnB;

2. (ANB) = A UB.
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Proor. (1) If AUB = (), then the theorem follows immediately since both A and B are the
empty set. Otherwise, we must show that (AU B) € A’N B’  and (AU B) D A’ N B’. Let
x € (AUB)". Then x ¢ AUB. So z is neither in A nor in B, by the definition of the union
of sets. By the definition of the complement, x € A’ and x € B’. Therefore, z € A’ N B’
and we have (AU B)' c A'NB'.

To show the reverse inclusion, suppose that x € A’ N B’. Then z € A’ and x € B’, and
sox ¢ Aand x ¢ B. Thus z ¢ AUB and so z € (AU B)’. Hence, (AUB)' D A’'N B’ and
so (AUB) =A'nB.

The proof of (2) is left as an exercise. [ |

Example 1.4 Other relations between sets often hold true. For example,
(A\B)N(B\ A) = 0.
To see that this is true, observe that
(A\B)N(B\A)=(AnB)Nn(BNn 4

=ANnA'NnBNnB
= 0.

Cartesian Products and Mappings

Given sets A and B, we can define a new set A x B, called the Cartesian product of A and
B, as a set of ordered pairs. That is,

Ax B={(a,b):ac Aandbe B}.

Example 1.5 If A = {z,y}, B={1,2,3}, and C = (), then A x B is the set

{(2,1),(2,2),(2,3), (v, 1), (¥, 2), (y,3)}

and
AxC=0.
O
We define the Cartesian product of n sets to be
Ay x - x Ay ={(a1,...,an) 1 a; € A; fori=1,...,n}.
If A=A = Ay =--- = A,, we often write A" for A x --- x A (where A would be written

n times). For example, the set R3 consists of all of 3-tuples of real numbers.

Subsets of A x B are called relations. We will define a mapping or function f C A x B
from a set A to a set B to be the special type of relation where each element a € A has
a unique element b € B such that (a,b) € f. Another way of saying this is that for every

element in A, f assigns a unique element in B. We usually write f : A — B or A I, B.
Instead of writing down ordered pairs (a,b) € A x B, we write f(a) =bor f:aw b The
set A is called the domain of f and

f(A)={f(a):ac A} CB

is called the range or image of f. We can think of the elements in the function’s domain as
input values and the elements in the function’s range as output values.
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Example 1.6 Suppose A = {1,2,3} and B = {a,b,c}. In Figure 1.7 we define relations f
and g from A to B. The relation f is a mapping, but g is not because 1 € A is not assigned
to a unique element in B; that is, g(1) = a and g(1) = b.

A B

Figure 1.7 Mappings and relations

O

Given a function f : A — B, it is often possible to write a list describing what the
function does to each specific element in the domain. However, not all functions can be
described in this manner. For example, the function f : R — R that sends each real number
to its cube is a mapping that must be described by writing f(z) = 22 or f : x + 3.

Consider the relation f : Q — Z given by f(p/q) = p. We know that 1/2 = 2/4, but
is f(1/2) = 1 or 2?7 This relation cannot be a mapping because it is not well-defined. A
relation is well-defined if each element in the domain is assigned to a unique element in the
range.

If f: A— B isa map and the image of f is B, i.e., f(A) = B, then f is said to
be onto or surjective. In other words, if there exists an a € A for each b € B such that
f(a) = b, then f is onto. A map is one-to-one or injective if a1 # ag implies f(a1) # f(a2).
Equivalently, a function is one-to-one if f(a1) = f(a2) implies a3 = az. A map that is both
one-to-one and onto is called bijective.

Example 1.8 Let f: Z — Q be defined by f(n) =n/1. Then f is one-to-one but not onto.
Define g : Q — Z by g(p/q) = p where p/q is a rational number expressed in its lowest
terms with a positive denominator. The function ¢ is onto but not one-to-one. ([
Given two functions, we can construct a new function by using the range of the first
function as the domain of the second function. Let f: A — B and g : B — C be mappings.
Define a new map, the composition of f and g from A to C, by (go f)(x) = g(f(z)).
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A B c

Figure 1.9 Composition of maps

Example 1.10 Consider the functions f : A — B and g : B — C that are defined in
Figure 1.9 (top). The composition of these functions, go f : A — C, is defined in Figure 1.9
(bottom). O

Example 1.11 Let f(x) = 22 and g(z) = 2z + 5. Then
(fog)(z) = f(g(x)) = (22 +5)* = 4a® + 20z + 25
and
(9o )z) = g(f(x)) = 22° +5.
In general, order makes a difference; that is, in most cases fog # go f. ([

Example 1.12 Sometimes it is the case that fog=go f. Let f(z) = 2 and g(z) = ¥/x.
Then

(fog)(x) = flg(x) = f(Vz)=(Vz)’ =
and

(g0 f)(z) = g(f(x)) = g(a®) = Vad = x.

Example 1.13 Given a 2 x 2 matrix
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we can define a map T4 : R? — R? by

Ta(z,y) = (ax + by, cx + dy)

for (x,7) in R2. This is actually matrix multiplication; that is,

a b\ (x\ [ax+by
c d) \y) \ex+dy/)’
Maps from R™ to R™ given by matrices are called linear maps or linear transformations.

[l
Example 1.14 Suppose that S = {1,2,3}. Define a map 7 : S — S by

This is a bijective map. An alternative way to write 7 is

1 2 3 1 2 3
m(l) = m - ’
( (1) m(2) (3)> <2 1 3>

For any set S, a one-to-one and onto mapping 7 : S — S is called a permutation of S. [J
Theorem 1.15 Let f: A— B, g: B—>C, and h: C — D. Then
1. The composition of mappings is associative; that is, (hog)o f =ho(go f);

2. If f and g are both one-to-one, then the mapping g o f is one-to-one;
3. If f and g are both onto, then the mapping g o f is onto;

4. If f and g are bijective, then so is go f.
Proor. We will prove (1) and (3). Part (2) is left as an exercise. Part (4) follows directly
from (2) and (3).
(1) We must show that
ho(gef)=(hog)of.

For a € A we have

(ho(gof))(a)=h((go f)(a))

(3) Assume that f and g are both onto functions. Given ¢ € C, we must show that
there exists an a € A such that (go f)(a) = g(f(a)) = ¢. However, since g is onto, there
is an element b € B such that g(b) = c. Similarly, there is an a € A such that f(a) = b.
Accordingly,

(go f)a) = g(f(a)) = g(b) = c.

|

If S is any set, we will use idg or id to denote the identity mapping from S to itself.

Define this map by id(s) = s for all s € S. A map g : B — A is an inverse mapping of

f:A—= Bifgof=1ida and fog = idpg; in other words, the inverse function of a function

simply “undoes” the function. A map is said to be invertible if it has an inverse. We usually
write f~! for the inverse of f.
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Example 1.16 The function f(x) = 2® has inverse f~!(x) = /= by Example 1.12. O

Example 1.17 The natural logarithm and the exponential functions, f(x) = Inz and
f~1(z) = €®, are inverses of each other provided that we are careful about choosing domains.
Observe that

and
whenever composition makes sense. O

)

Then A defines a map from R? to R? by

Example 1.18 Suppose that

We can find an inverse map of T4 by simply inverting the matrix A; that is, Tgl =Ty-1.
In this example,
Al 2 -1\
-5 3 )’

hence, the inverse map is given by
Tgl(ac, y) = (2 — y, —bx + 3y).
It is easy to check that
Tgl oTa(x,y) =Tao Tgl(:v,y) = (z,y).
Not every map has an inverse. If we consider the map

Tp(z,y) = (3z,0)

B:30,
00

then an inverse map would have to be of the form

given by the matrix

Tgl(w, y) = (az + by, cx + dy)

and
(z,y) = Tp o Tz (x,y) = (3az + 3by, 0)
for all x and y. Clearly this is impossible because y might not be 0. O

Example 1.19 Given the permutation

12 3
m =
(231)
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on S = {1,2,3}, it is easy to see that the permutation defined by

-1 1 2 3
i =
31 2

is the inverse of 7. In fact, any bijective mapping possesses an inverse, as we will see in the
next theorem. 0

Theorem 1.20 A mapping is invertible if and only if it is both one-to-one and onto.
PROOF. Suppose first that f : A — B is invertible with inverse ¢ : B — A. Then
go f =1idj, is the identity map; that is, g(f(a)) = a. If aj,as € A with f(a1) = f(a2), then
a1 = g(f(a1)) = g(f(a2)) = az. Consequently, f is one-to-one. Now suppose that b € B.
To show that f is onto, it is necessary to find an a € A such that f(a) = b, but f(g(b)) =0
with g(b) € A. Let a = g(b).

Conversely, let f be bijective and let b € B. Since f is onto, there exists an a € A such
that f(a) =b. Because f is one-to-one, a must be unique. Define g by letting g(b) = a. We
have now constructed the inverse of f. |

Equivalence Relations and Partitions

A fundamental notion in mathematics is that of equality. We can generalize equality with
equivalence relations and equivalence classes. An equivalence relation on a set X is a
relation R C X x X such that

e (z,z) € R for all z € X (reflexive property);
e (z,y) € R implies (y,z) € R (symmetric property);
e (z,y) and (y,2) € R imply (x,z) € R (transitive property).

Given an equivalence relation R on a set X, we usually write = ~ y instead of (z,y) € R.
If the equivalence relation already has an associated notation such as =, =, or =, we will
use that notation.

Example 1.21 Let p, ¢, 7, and s be integers, where g and s are nonzero. Define p/q ~ r/s
if ps = qr. Clearly ~ is reflexive and symmetric. To show that it is also transitive, suppose
that p/q ~ r/s and r/s ~ t/u, with ¢, s, and w all nonzero. Then ps = ¢r and ru = st.
Therefore,

psu = qru = qst.

Since s # 0, pu = gt. Consequently, p/q ~ t/u. O

Example 1.22 Suppose that f and g are differentiable functions on R. We can define an
equivalence relation on such functions by letting f(z) ~ g(z) if f/'(x) = ¢'(z). It is clear that
~ is both reflexive and symmetric. To demonstrate transitivity, suppose that f(z) ~ g(x)
and g(x) ~ h(x). From calculus we know that f(x)—g(z) = ¢1 and g(z) — h(z) = a2, where
c1 and ¢y are both constants. Hence,

f(x) = h(z) = (f(z) —g(z)) + (9(z) = h(z)) = c1 + 2
and f'(x) — h'(z) = 0. Therefore, f(z) ~ h(z). O

Example 1.23 For (z1,%1) and (22, y2) in R?, define (z1,v1) ~ (w2, y2) if 22 + 192 = 23 +y2.
Then ~ is an equivalence relation on R2. O

Example 1.24 Let A and B be 2 x 2 matrices with entries in the real numbers. We can
define an equivalence relation on the set of 2 x 2 matrices, by saying A ~ B if there exists
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an invertible matrix P such that PAP~! = B. For example, if

A (1 ?) and o (18 )
11 11 20

then A ~ B since PAP~! = B for
P (2 5) .
1 3

Let I be the 2 x 2 identity matrix; that is,

()

Then TAI~' = TAI = A; therefore, the relation is reflexive. To show symmetry, suppose
that A ~ B. Then there exists an invertible matrix P such that PAP~! = B. So

A=P'BP=pPlB(P 1L

Finally, suppose that A ~ B and B ~ C. Then there exist invertible matrices P and Q
such that PAP™! = B and QBQ™! = C. Since

C=QBQ ' =QPAP'Q™!' = (QP)A(QP) ™,

the relation is transitive. Two matrices that are equivalent in this manner are said to be
similar. O

A partition P of a set X is a collection of nonempty sets X1, Xo, ... such that X;NX; =0
for i # j and |J, X = X. Let ~ be an equivalence relation on a set X and let € X. Then
[] ={y € X : y ~ z} is called the equivalence class of x. We will see that an equivalence
relation gives rise to a partition via equivalence classes. Also, whenever a partition of a
set exists, there is some natural underlying equivalence relation, as the following theorem
demonstrates.

Theorem 1.25 Given an equivalence relation ~ on a set X, the equivalence classes of X
form a partition of X. Conversely, if P = {X;} is a partition of a set X, then there is an
equivalence relation on X with equivalence classes X;.

PROOF. Suppose there exists an equivalence relation ~ on the set X. For any = € X, the
reflexive property shows that = € [z] and so [z] is nonempty. Clearly X = (J,cx[z]. Now
let z,y € X. We need to show that either [z] = [y] or [z] N [y] = 0. Suppose that the
intersection of [z] and [y] is not empty and that z € [x] N [y]. Then z ~ z and z ~ y. By
symmetry and transitivity = ~ y; hence, [z] C [y]. Similarly, [y] C [z] and so [z] = [y].
Therefore, any two equivalence classes are either disjoint or exactly the same.

Conversely, suppose that P = {X;} is a partition of a set X. Let two elements be
equivalent if they are in the same partition. Clearly, the relation is reflexive. If x is in the
same partition as y, then y is in the same partition as x, so x ~ y implies y ~ x. Finally, if
x is in the same partition as y and y is in the same partition as z, then x must be in the
same partition as z, and transitivity holds. |

Corollary 1.26 Two equivalence classes of an equivalence relation are either disjoint or
equal.

Let us examine some of the partitions given by the equivalence classes in the last set of
examples.
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Example 1.27 In the equivalence relation in Example 1.21, two pairs of integers, (p, q) and
(r,s), are in the same equivalence class when they reduce to the same fraction in its lowest
terms. O

Example 1.28 In the equivalence relation in Example 1.22; two functions f(z) and g(z)
are in the same partition when they differ by a constant. ([

Example 1.29 We defined an equivalence class on R? by (x1,y1) ~ (w2,y2) if 27 + v} =
73 + y3. Two pairs of real numbers are in the same partition when they lie on the same
circle about the origin. O

Example 1.30 Let » and s be two integers and suppose that n € N. We say that r is
congruent to s modulo n, or r is congruent to s mod n, if r — s is evenly divisible by n; that
is, r — s = nk for some k € Z. In this case we write 7 = s (mod n). For example, 41 = 17
(mod 8) since 41 — 17 = 24 is divisible by 8. We claim that congruence modulo n forms an
equivalence relation of Z. Certainly any integer r is equivalent to itself since r —r = 0 is
divisible by n. We will now show that the relation is symmetric. If » = s (mod n), then
r —s = —(s —r) is divisible by n. So s — r is divisible by n and s = r (mod n). Now
suppose that » = s (mod n) and s = ¢ (mod n). Then there exist integers k and [ such
that r — s = kn and s —t = In. To show transitivity, it is necessary to prove that r — ¢ is
divisible by n. However,

r_t:T_$+s_t:kn+ln:(k+l)n7

and so r — t is divisible by n.
If we consider the equivalence relation established by the integers modulo 3, then

0]=1{...,-3,0,3,6,...},
] ={.,-21,47...},
2] ={...,~1,2,5,8,...}.

Notice that [0] U [1] U [2] = Z and also that the sets are disjoint. The sets [0], [1], and [2]
form a partition of the integers.

The integers modulo n are a very important example in the study of abstract algebra
and will become quite useful in our investigation of various algebraic structures such as
groups and rings. In our discussion of the integers modulo n we have actually assumed a
result known as the division algorithm, which will be stated and proved in Chapter 2. [J

1.3 Reading Questions

1. What do relations and mappings have in common?
What makes relations and mappings different?

3. State carefully the three defining properties of an equivalence relation. In other words,
do not just name the properties, give their definitions.

What is the big deal about equivalence relations? (Hint: Partitions.)

5. Describe a general technique for proving that two sets are equal.
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1.4 Exercises

1.

18.

Suppose that

A={x:z € Nand z is even},
B ={z:2z € N and z is prime},
C ={z:2z € N and z is a multiple of 5}.

Describe each of the following sets.

(a) ANB c)

(
(b) BNnC (d) An(BUCQC)
If A={a,b,c}, B={1,2,3}, C = {x}, and D = (), list all of the elements in each of

the following sets.
(a) AxB (¢) Ax BxC

AU
AN

(b) Bx A (d) Ax D
Find an example of two nonempty sets A and B for which A x B = B x A is true.
Prove AUD = A and ANQ = 0.
Prove AUB=BUAand ANB=BNA.
Prove AU(BNC)=(AUB)N(AUC).
Prove AN(BUC)=(ANB)U(ANC).
Prove A C B if and only if AN B = A.
Prove (ANB) = A UDB'.

. Prove AUB=(ANB)U(A\B)U(B\A).
. Prove (AUB
. Prove (ANB
. Prove (AUB)\ B=A\B.

. Prove A\ (BUC)=(A\B)Nn(A\CO).

. Prove AN(B\C)=(ANB)\ (ANCOC).

. Prove (A\B)U(B\A)=(AUB)\ (ANB).

. Which of the following relations f : Q — Q define a mapping? In each case, supply a

xC=(AxC)U(BxC).

)
)\ B = 0.

reason why f is or is not a mapping.

@) Flp/a) = 25 (©) o)) = p;q
3p p
(b) fp/a) =3, (d) f(p/q) = 7_6

Determine which of the following functions are one-to-one and which are onto. If the
function is not onto, determine its range.

(a) f:R — R defined by f(z

n?+3

sinx

)
(b) f:7Z — Z defined by f(n)
(c) f:R — R defined by f(x) =
(d) f:Z — Z defined by f(z) =
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19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

Let f: A — Band g : B — C be invertible mappings; that is, mappings such that f~!
and g1 exist. Show that (go f)~!= f~log™h

(a) Define a function f : N — N that is one-to-one but not onto.

(b) Define a function f : N — N that is onto but not one-to-one.

Prove the relation defined on R? by (z1,y1) ~ (wa,92) if 2 + y3 = 23 + y3 is an
equivalence relation.

Let f: A— B and g: B — C be maps.
(a

(b) If g o f is onto, show that g is onto.

)
)
)
)

If f and g are both one-to-one functions, show that g o f is one-to-one.

(c) If go f is one-to-one, show that f is one-to-one.

(d

(e) If go f is onto and g is one-to-one, show that f is onto.

If g o f is one-to-one and f is onto, show that ¢ is one-to-one.

Define a function on the real numbers by

r+1
x—1

flz) =

What are the domain and range of f? What is the inverse of f? Compute fo f~! and
ftof.
Let f: X — Y be a map with A;, 4> C X and B;,Bs C Y.

(a) Prove f(A1UAz2) = f(A1) U f(As2).
(b) Prove f(A1 N As) C f(A1) N f(A2). Give an example in which equality fails.

(c) Prove f~1(B1 U Bs) = f~1(By) U f~1(Bs), where
fY(B)={reX: f(zx) € B}.

(d) Prove f~'(B1N Ba) = f~1(B1) N f~1(Ba).

(e) Prove f~H(Y'\ Bi) = X \ f~!(B1).

Determine whether or not the following relations are equivalence relations on the given
set. If the relation is an equivalence relation, describe the partition given by it. If the
relation is not an equivalence relation, state why it fails to be one.

(a) z~yinRifz >y (c) z~yinRif [z —y|] <4

(b) m~ninZif mn >0 (d) m~ninZif m =n (mod 6)
Define a relation ~ on R? by stating that (a,b) ~ (c,d) if and only if a® + b? < ¢ + d2.
Show that ~ is reflexive and transitive but not symmetric.

Show that an m X n matrix gives rise to a well-defined map from R" to R™.
Find the error in the following argument by providing a counterexample. “The reflexive

property is redundant in the axioms for an equivalence relation. If x ~ y, then y ~ x
by the symmetric property. Using the transitive property, we can deduce that z ~ x.”

Projective Real Line. Define a relation on R?\ {(0,0)} by letting (z1,y1) ~ (72, ¥2)
if there exists a nonzero real number A such that (z1,y1) = (Az2, A\y2). Prove that ~
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defines an equivalence relation on R?\ (0,0). What are the corresponding equivalence
classes? This equivalence relation defines the projective line, denoted by P(R), which
is very important in geometry.
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1.6 Sage

Sage is a powerful system for studying and exploring many different areas of mathematics.
In this textbook, you will study a variety of algebraic structures, such as groups, rings and
fields. Sage does an excellent job of implementing many features of these objects as we will
see in the chapters ahead. But here and now, in this initial chapter, we will concentrate on
a few general ways of getting the most out of working with Sage.

You may use Sage several different ways. It may be used as a command-line program
when installed on your own computer. Or it might be a web application such as the
SageMathCloud. Our writing will assume that you are reading this as a worksheet within
the Sage Notebook (a web browser interface), or this is a section of the entire book presented
as web pages, and you are employing the Sage Cell Server via those pages. After the first few
chapters the explanations should work equally well for whatever vehicle you use to execute
Sage commands.
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Executing Sage Commands

Most of your interaction will be by typing commands into a compute cell. If you are reading
this in the Sage Notebook or as a webpage version of the book, then you will see a compute
cell just below this paragraph. Click once inside the compute cell and if you are in the Sage
Notebook, you will get a more distinctive border around it, a blinking cursor inside, plus a
cute little “evaluate” link below.At the cursor, type 2+2 and then click on the evaluate link.
Did a 4 appear below the cell? If so, you have successfully sent a command off for Sage to
evaluate and you have received back the (correct) answer.

Here is another compute cell. Try evaluating the command factorial(300) here. Hmmmmm.
That is quite a big integer! If you see slashes at the end of each line, this means the result
is continued onto the next line, since there are 615 total digits in the result.

To make new compute cells in the Sage Notebook (only), hover your mouse just above
another compute cell, or just below some output from a compute cell. When you see a
skinny blue bar across the width of your worksheet, click and you will open up a new
compute cell, ready for input. Note that your worksheet will remember any calculations
you make, in the order you make them, no matter where you put the cells, so it is best to
stay organized and add new cells at the bottom.

Try placing your cursor just below the monstrous value of 300! that you have. Click on
the blue bar and try another factorial computation in the new compute cell.

Each compute cell will show output due to only the very last command in the cell. Try
to predict the following output before evaluating the cell.

a = 1@
b =6

b =Db - 10
a = a + 20
a

30

The following compute cell will not print anything since the one command does not
create output. But it will have an effect, as you can see when you execute the subsequent
cell. Notice how this uses the value of b from above. Execute this compute cell once.
Exactly once. Even if it appears to do nothing. If you execute the cell twice, your credit
card may be charged twice.

b =b + 50

Now execute this cell, which will produce some output.

b + 20

66

So b came into existence as 6. We subtracted 10 immediately afterward. Then a
subsequent cell added 50. This assumes you executed this cell exactly once! In the last
cell we create b+20 (but do not save it) and it is this value (66) that is output, while b is
still 46.

You can combine several commands on one line with a semi-colon. This is a great way
to get multiple outputs from a compute cell. The syntax for building a matrix should be
somewhat obvious when you see the output, but if not, it is not particularly important to
understand now.
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A = matrix([[3, 11, [5,211); A

[3 11
[5 2]

print(A); print(); print(A.inverse())

[3 1]

[5 2]
<BLANKLINE >
L 2 -1]

(-5 31

Immediate Help

)

Some commands in Sage are “functions,” an example is factorial() above. Other com-
mands are “methods” of an object and are like characteristics of objects, an example is
.inverse() as a method of a matrix. Once you know how to create an object (such as a
matrix), then it is easy to see all the available methods. Write the name of the object, place
a period (“dot”) and hit the TAB key. If you have A defined from above, then the compute
cell below is ready to go, click into it and then hit TAB (not “evaluate”!). You should get
a long list of possible methods.

A.

To get some help on how to use a method with an object, write its name after a dot
(with no parentheses) and then use a question-mark and hit TAB. (Hit the escape key “ESC”
to remove the list, or click on the text for a method.)

A.inverse?

With one more question-mark and a TAB you can see the actual computer instructions
that were programmed into Sage to make the method work, once you scoll down past the
documentation delimited by the triple quotes ("""):

A.inverse??

It is worthwhile to see what Sage does when there is an error. You will probably see a
lot of these at first, and initially they will be a bit intimidating. But with time, you will
learn how to use them effectively and you will also become more proficient with Sage and
see them less often. Execute the compute cell below, it asks for the inverse of a matrix that
has no inverse. Then reread the commentary.

B = matrix([[2, 201, [5, 50]1)
B.inverse ()

Traceback (most recent call last):

ZeroDivisionError: matrix must be nonsingular

Click just to the left of the error message to expand it fully (another click hides it totally,
and a third click brings back the abbreviated form). Read the bottom of an error message
first, it is your best explanation. Here a ZeroDivisionError is not 100% accurate, but is
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close. The matrix is not invertible, not dissimilar to how we cannot divide scalars by zero.
The remainder of the message begins at the top showing were the error first happened in
your code and then the various places where intermediate functions were called, until the
actual piece of Sage where the problem occurred. Sometimes this information will give you
some clues, sometimes it is totally undecipherable. So do not let it scare you if it seems
mysterious, but do remember to always read the last line first, then go back and read the
first few lines for something that looks like your code.

Annotating Your Work

It is easy to comment on your work when you use the Sage Notebook. (The following only
applies if you are reading this within a Sage Notebook. If you are not, then perhaps you
can go open up a worksheet in the Sage Notebook and experiment there.) You can open
up a small word-processor by hovering your mouse until you get a skinny blue bar again,
but now when you click, also hold the SHIFT key at the same time. Experiment with fonts,
colors, bullet lists, etc and then click the “Save changes” button to exit. Double-click on
your text if you need to go back and edit it later.

Open the word-processor again to create a new bit of text (maybe next to the empty
compute cell just below). Type all of the following exactly,

Pythagorean Theorem: $c*2=a*2+b”*2$

and save your changes. The symbols between the dollar signs are written according to the
mathematical typesetting language known as TEX — cruise the internet to learn more about
this very popular tool. (Well, it is extremely popular among mathematicians and physical
scientists.)

Lists

Much of our interaction with sets will be through Sage lists. These are not really sets — they
allow duplicates, and order matters. But they are so close to sets, and so easy and powerful
to use that we will use them regularly. We will use a fun made-up list for practice, the
quote marks mean the items are just text, with no special mathematical meaning. Execute
these compute cells as we work through them.

zoo = ['snake', 'parrot', 'elephant', 'baboon', 'beetle']
Z00
['snake', 'parrot', 'elephant', 'baboon', 'beetle']

So the square brackets define the boundaries of our list, commas separate items, and we
can give the list a name. To work with just one element of the list, we use the name and
a pair of brackets with an index. Notice that lists have indices that begin counting at zero.
This will seem odd at first and will seem very natural later.

zoo[2]

'elephant'

We can add a new creature to the zoo, it is joined up at the far right end.

zoo.append('ostrich'); zoo

['snake', 'parrot', 'elephant', 'baboon', 'beetle', 'ostrich']

We can remove a creature.
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zoo.remove ( 'parrot')
z0o

['snake', 'elephant', 'baboon', 'beetle', 'ostrich']

We can extract a sublist. Here we start with element 1 (the elephant) and go all the
way up to, but not including, element 3 (the beetle). Again a bit odd, but it will feel natural
later. For now, notice that we are extracting two elements of the lists, exactly 3 — 1 = 2
elements.

mammals = zoo[1:3]
mammals
['elephant', 'baboon']

Often we will want to see if two lists are equal. To do that we will need to sort a list
first. A function creates a new, sorted list, leaving the original alone. So we need to save
the new one with a new name.

newzoo = sorted(zoo)
newzoo
[ 'baboon', 'beetle', 'elephant', 'ostrich', 'snake']

zoo.sort ()
Z0o

[ 'baboon', 'beetle', 'elephant', 'ostrich', 'snake']

Notice that if you run this last compute cell your zoo has changed and some commands
above will not necessarily execute the same way. If you want to experiment, go all the way
back to the first creation of the zoo and start executing cells again from there with a fresh
Z00.

A construction called a list comprehension is especially powerful, especially since it
almost exactly mirrors notation we use to describe sets. Suppose we want to form the
plural of the names of the creatures in our zoo. We build a new list, based on all of the
elements of our old list.

plurality_zoo = [animal+'s' for animal in zoo]
plurality_zoo

[ 'baboons', 'beetles', 'elephants', 'ostrichs', 'snakes']

Almost like it says: we add an “s” to each animal name, for each animal in the zoo, and
place them in a new list. Perfect. (Except for getting the plural of “ostrich” wrong.)

Lists of Integers

One final type of list, with numbers this time. The srange() function will create lists of
integers. (The “s” in the name stands for “Sage” and so will produce integers that Sage
understands best. Many early difficulties with Sage and group theory can be alleviated by
using only this command to create lists of integers.) In its simplest form an invocation
like srange(12) will create a list of 12 integers, starting at zero and working up to, but not
including, 12. Does this sound familiar?
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dozen = srange(12); dozen

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Here are two other forms, that you should be able to understand by studying the exam-
ples.

teens = srange (13, 20); teens

(13, 14, 15, 16, 17, 18, 19]

decades = srange (1900, 2000, 10); decades

[1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990]

Saving and Sharing Your Work

There is a “Save” button in the upper-right corner of the Sage Notebook. This will save a
current copy of your worksheet that you can retrieve your work from within your notebook
again later, though you have to re-execute all the cells when you re-open the worksheet.

There is also a “File” drop-down list, on the left, just above your very top compute cell
(not be confused with your browser’s File menu item!). You will see a choice here labeled
“Save worksheet to a file...” When you do this, you are creating a copy of your worksheet
in the sws format (short for “Sage WorkSheet”). You can email this file, or post it on a
website, for other Sage users and they can use the “Upload” link on the homepage of their
notebook to incorporate a copy of your worksheet into their notebook.

There are other ways to share worksheets that you can experiment with, but this gives
you one way to share any worksheet with anybody almost anywhere.

We have covered a lot here in this section, so come back later to pick up tidbits you
might have missed. There are also many more features in the Sage Notebook that we have
not covered.

1.7 Sage Exercises

1. This exercise is just about making sure you know how to use Sage. You may be
using the Sage Notebook server the online CoCalc service through your web browser.
In either event, create a new worksheet. Do some non-trivial computation, maybe a
pretty plot or some gruesome numerical computation to an insane precision. Create
an interesting list and experiment with it some. Maybe include some nicely formatted
text or TEX using the included mini-word-processor of the Sage Notebook (hover until
a blue bar appears between cells and then shift-click) or create commentary in cells
within CoCalc using the magics %html or %md on a line of their own followed by text in
HTML or Markdown syntax (respectively).

Use whatever mechanism your instructor has in place for submitting your work. Or
save your worksheet and then trade with a classmate.
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The Integers

The integers are the building blocks of mathematics. In this chapter we will investigate
the fundamental properties of the integers, including mathematical induction, the division
algorithm, and the Fundamental Theorem of Arithmetic.

2.1 Mathematical Induction
Suppose we wish to show that

n(n+1)

1424... =
+24---+n 5

for any natural number n. This formula is easily verified for small numbers such as n = 1,
2, 3, or 4, but it is impossible to verify for all natural numbers on a case-by-case basis. To
prove the formula true in general, a more generic method is required.

Suppose we have verified the equation for the first n cases. We will attempt to show
that we can generate the formula for the (n + 1)th case from this knowledge. The formula
is true for n = 1 since

1(1+1)
1=—— "
2
If we have verified the first n cases, then
nn—+1
1+2+~--+n+(n+1):(2)+n+1
_n2+3n+2
B 2
~ (n+D[(n+1)+1]
= 5 )

This is exactly the formula for the (n + 1)th case.

This method of proof is known as mathematical induction. Instead of attempting to
verify a statement about some subset S of the positive integers N on a case-by-case basis, an
impossible task if S is an infinite set, we give a specific proof for the smallest integer being
considered, followed by a generic argument showing that if the statement holds for a given
case, then it must also hold for the next case in the sequence. We summarize mathematical
induction in the following axiom.

Principle 2.1 First Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If for all integers k

22
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with k > ng, S(k) implies that S(k + 1) is true, then S(n) is true for all integers n greater
than or equal to ng.

Example 2.2 For all integers n > 3, 2" > n + 4. Since
8§=23>344="T,

the statement is true for ng = 3. Assume that 28 > k +4 for k > 3. Then 2Ft1 =2.2F >
2(k+4). But
20k+4)=2k+8>k+5=(k+1)+4

since k is positive. Hence, by induction, the statement holds for all integers n > 3. [l
Example 2.3 Every integer 10"T! + 3. 10" + 5 is divisible by 9 for n € N. For n = 1,
101 +3-10+5=135=9-15

is divisible by 9. Suppose that 10*+1 4 3. 10* + 5 is divisible by 9 for k > 1. Then

100D+ 3108+ 45 = 10842 4 3. 108! 450 — 45

= 10(10"*1 +3.10% +-5) — 45
is divisible by 9. ([
Example 2.4 We will prove the binomial theorem using mathematical induction; that is,
" /n
(a+b)" = kzo (k) akpnk,

where a and b are real numbers, n € N, and

(1) = m

is the binomial coefficient. We first show that

n+1 _(n n n
k - \k k—1/"
This result follows from

<Z> + (k i 1> = k!(nn! PIRECE 1)!(3! ket 1)
(n+1)!

T K(n+1—k)

_(n+1

= L)
If n = 1, the binomial theorem is easy to verify. Now assume that the result is true for n
greater than or equal to 1. Then

(a4 5" = (a+b)(a+Db)"



CHAPTER 2. THE INTEGERS 24
_ ~ (n k+1pn—k — (n kpn+l—k
—Z<k>a b —i—Z(k)ab
k=0 k=0
—a Y (k n 1) dFpr Ly (Z) aFpri—k et
=1 N k=1
_n+l g n n kin+1—k n-+1
—a +;[<k_1>+<k>]ab +b

1
_ < <n + 1) aFpnti—k
‘ k

Jr

B
Il

O
We have an equivalent statement of the Principle of Mathematical Induction that is
often very useful.

Principle 2.5 Second Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If S(ng),S(no +
1),...,S(k) imply that S(k+ 1) for k > ng, then the statement S(n) is true for all integers
n > ng.

A nonempty subset S of Z is well-ordered if S contains a least element. Notice that the
set Z is not well-ordered since it does not contain a smallest element. However, the natural
numbers are well-ordered.

Principle 2.6 Principle of Well-Ordering. Fvery nonempty subset of the natural
numbers is well-ordered.
The Principle of Well-Ordering is equivalent to the Principle of Mathematical Induction.

Lemma 2.7 The Principle of Mathematical Induction implies that 1 is the least positive

natural number.
PROOF. Let S={n € N:n>1}. Then 1 € S. Assume that n € S. Since 0 < 1, it must

be the case that n = n 4+ 0 < n 4+ 1. Therefore, 1 < n < n+ 1. Consequently, if n € S,
then n 4+ 1 must also be in S, and by the Principle of Mathematical Induction, and we have
S=N. [ |
Theorem 2.8 The Principle of Mathematical Induction implies the Principle of Well-
Ordering. That is, every nonempty subset of N contains a least element.

PrROOF. We must show that if S is a nonempty subset of the natural numbers, then S
contains a least element. If S contains 1, then the theorem is true by Lemma 2.7. Assume
that if S contains an integer k such that 1 < k£ < n, then S contains a least element. We
will show that if a set S contains an integer less than or equal to n + 1, then S has a least
element. If S does not contain an integer less than n + 1, then n + 1 is the smallest integer
in S. Otherwise, since S is nonempty, .S must contain an integer less than or equal to n. In
this case, by induction, S contains a least element. |

Induction can also be very useful in formulating definitions. For instance, there are two
ways to define n!, the factorial of a positive integer n.

o The explicit definition: n! =1-2-3---(n —1) - n.
o The inductive or recursive definition: 1! =1 and n! = n(n — 1)! for n > 1.

Every good mathematician or computer scientist knows that looking at problems recursively,
as opposed to explicitly, often results in better understanding of complex issues.
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2.2 The Division Algorithm

An application of the Principle of Well-Ordering that we will use often is the division
algorithm.

Theorem 2.9 Division Algorithm. Let a and b be integers, with b > 0. Then there
exist unique integers q and r such that

a=bg+r

where 0 < r < b.
PRroOOF. This is a perfect example of the existence-and-uniqueness type of proof. We must
first prove that the numbers ¢ and r actually exist. Then we must show that if ¢’ and r’
are two other such numbers, then ¢ = ¢/ and r =7/,

Ezistence of ¢ and r. Let

S={a—-0bk:keZand a—0bk>0}.

If 0 € S, then b divides a, and we can let ¢ = a/b and r = 0. If 0 ¢ S, we can use the
Well-Ordering Principle. We must first show that S is nonempty. If ¢ > 0, then a—5b-0 € S.
If a < 0, then a — b(2a) = a(l —2b) € S. In either case S # (). By the Well-Ordering
Principle, S must have a smallest member, say r = a — bq. Therefore, a = bg+r, r > 0.
We now show that r < b. Suppose that > b. Then

a—blg+1l)=a—-bg—b=r—0>0.

In this case we would have a — b(q + 1) in the set S. But then a — b(q¢ + 1) < a — bgq, which
would contradict the fact that » = a — bg is the smallest member of S. So r < b. Since
0¢S,r#bandsor<b.

Uniqueness of ¢ and r. Suppose there exist integers r, r’, ¢, and ¢’ such that

a=bg+r,0<r<b and a=bqd +1,0<7r <b.

Then bg+7r = bg’ +71'. Assume that ' > r. From the last equation we have b(¢—¢') = r'—r;
therefore, b must divide v’ —r and 0 < v’ —r < ¢’ < b. This is possible only if ' — r = 0.
Hence, r =" and ¢ = ¢'. [ |

Let a and b be integers. If b = ak for some integer k, we write a | b. An integer d
is called a common divisor of a and b if d | a and d | b. The greatest common divisor of
integers a and b is a positive integer d such that d is a common divisor of a and b and if d’
is any other common divisor of a and b, then d’' | d. We write d = ged(a, b); for example,
ged(24,36) = 12 and ged(120,102) = 6. We say that two integers a and b are relatively
prime if ged(a,b) = 1.

Theorem 2.10 Let a and b be nonzero integers. Then there exist integers r and s such that
ged(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.
PROOF. Let
S ={am+bn:m,n e Z and am + bn > 0}.

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S must have a smallest
member, say d = ar + bs. We claim that d = ged(a,b). Write a = dg + v’ where 0 < ' < d.
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If v/ > 0, then

' =a—dg
=a — (ar + bs)q
=a—arq— bsq

= a(l —rq) + b(—sq),

which is in S. But this would contradict the fact that d is the smallest member of S. Hence,
r’ = 0 and d divides a. A similar argument shows that d divides b. Therefore, d is a common
divisor of a and b.

Suppose that d’ is another common divisor of a and b, and we want to show that d’ | d.
If we let @ = d’h and b = d’k, then

d=ar+bs=dhr+dks=d(hr+ks).

So d’ must divide d. Hence, d must be the unique greatest common divisor of @ and b. W

Corollary 2.11 Let a and b be two integers that are relatively prime. Then there exist
integers v and s such that ar + bs = 1.

The Euclidean Algorithm

Among other things, Theorem 2.10 allows us to compute the greatest common divisor of
two integers.

Example 2.12 Let us compute the greatest common divisor of 945 and 2415. First observe
that

2415 =945-2 4 525
945 = 525 -1 4420
525 =420-1+ 105
420 =105-4+0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and 105 divides 2415.
Hence, 105 divides both 945 and 2415. If d were another common divisor of 945 and 2415,
then d would also have to divide 105. Therefore, gcd(945,2415) = 105.

If we work backward through the above sequence of equations, we can also obtain num-
bers r and s such that 945r + 2415s = 105. Observe that

105 = 525 4 (—1) - 420
=525+ (—1)-[945 + (—1) - 525]
=2-525+(—1)-945
=2-[2415+ (—2) - 945] 4+ (—1) - 945
=2-2415 4 (=5) - 945.
So r = —5 and s = 2. Notice that » and s are not unique, since r = 41 and s = —16 would
also work. O

To compute ged(a,b) = d, we are using repeated divisions to obtain a decreasing se-
quence of positive integers ry > ro > -+ > 1, = d; that is,

b=uaq +71
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a=1ryqs+12

r1L =Tr2q3 + T3

Th—2 = Tn—1qn + Tn

Tn—1 = T"ndn+1-

To find r and s such that ar+bs = d, we begin with this last equation and substitute results
obtained from the previous equations:

d=ry,

T"n—2 — Tn—14n
=Tn—2 — Qn(rn—i’) - Qn—lrn—2>

—QGnTn—3 + (1 + QnQn—l)Tn—2

= ra + sb.

The algorithm that we have just used to find the greatest common divisor d of two integers
a and b and to write d as the linear combination of a and b is known as the FEuclidean
algorithm.

Prime Numbers

Let p be an integer such that p > 1. We say that p is a prime number, or simply p is prime,
if the only positive numbers that divide p are 1 and p itself. An integer n > 1 that is not
prime is said to be composite.

Lemma 2.13 Euclid. Let a and b be integers and p be a prime number. If p | ab, then
either p | a or p | b.

PROOF. Suppose that p does not divide a. We must show that p | b. Since ged(a,p) = 1,
there exist integers r and s such that ar +ps = 1. So

b =b(ar + ps) = (ab)r + p(bs).

Since p divides both ab and itself, p must divide b = (ab)r + p(bs). [ |

Theorem 2.14 Euclid. There exist an infinite number of primes.

ProoOF. We will prove this theorem by contradiction. Suppose that there are only a finite
number of primes, say pi,p2,...,Pn. Let P = pip2---p, + 1. Then P must be divisible
by some p; for 1 < ¢ < n. In this case, p; must divide P — pips---p, = 1, which is a
contradiction. Hence, either P is prime or there exists an additional prime number p # p;
that divides P. |

Theorem 2.15 Fundamental Theorem of Arithmetic. Let n be an integer such that
n > 1. Then

n=pip2 - Pk;
where pi,...,pr are primes (not necessarily distinct). Furthermore, this factorization is
unique; that is, if

n=4qq2" -4,

then k =1 and the q;’s are just the p;’s rearranged.
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ProoF. Uniqueness. To show uniqueness we will use induction on n. The theorem is
certainly true for n = 2 since in this case n is prime. Now assume that the result holds for
all integers m such that 1 < m < n, and

n=pip2--Pr = 4192 - qi,

where pg < pg < --- < prand ¢ < g2 < --- < ¢. By Lemma 2.13, p; | ¢; for some
i=1,...,land q; | pj for some j =1,..., k. Since all of the p;’s and ¢;’s are prime, p; = ¢;
and g1 = p;. Hence, p1 = ¢1 since p1 < p; = ¢1 < ¢; = p1. By the induction hypothesis,

n/:pm"pk:@“'tﬂ

has a unique factorization. Hence, k =1 and ¢; = p; fori=1,...,k.

Ezistence. To show existence, suppose that there is some integer that cannot be written
as the product of primes. Let S be the set of all such numbers. By the Principle of Well-
Ordering, S has a smallest number, say a. If the only positive factors of a are a and 1, then
a is prime, which is a contradiction. Hence, a = ajas where 1 < a1 < a and 1 < as < a.
Neither a; € S nor as € S, since a is the smallest element in S. So

air=pi1---pPr
a2 =4q1---4gs.

Therefore,
G = a1a2 =pi---Prq1 - --4gs.

So a ¢ S, which is a contradiction. [ |

[ | Historical Note [ |

Prime numbers were first studied by the ancient Greeks. Two important results from antiq-
uity are Euclid’s proof that an infinite number of primes exist and the Sieve of Eratosthenes,
a method of computing all of the prime numbers less than a fixed positive integer n. One
problem in number theory is to find a function f such that f(n) is prime for each integer n.
Pierre Fermat (16017-1665) conjectured that 22" + 1 was prime for all n, but later it was
shown by Leonhard Euler (1707-1783) that

92”11 = 4,294,967,297

is a composite number. One of the many unproven conjectures about prime numbers is
Goldbach’s Conjecture. In a letter to Euler in 1742, Christian Goldbach stated the conjec-
ture that every even integer with the exception of 2 seemed to be the sum of two primes:
4 =242 6=34+3,8=3+25,.... Although the conjecture has been verified for the
numbers up through 4 x 108, it has yet to be proven in general. Since prime numbers play
an important role in public key cryptography, there is currently a great deal of interest in
determining whether or not a large number is prime.

2.3 Reading Questions

Use Sage to express 123456792 as a product of prime numbers.
Find the greatest common divisor of 84 and 52.
Find integers r and s so that r(84) + s(52) = ged(84, 52).

Explain the use of the term “induction hypothesis.”

oW N
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5.

What is Goldbach’s Conjecture? And why is it called a “conjecture”?

2.4 Exercises

1.

10.

11.
12.

13.

14.

Prove that
249244 = n(n+1)(2n+1)
6
for n € N.
Prove that ) )
134+25 4 ... 43 = M
4
for n € N.
Prove that n! > 2" for n > 4.
Prove that 3 ]
x+4x+7x+-~+(3n—2)xzw
for n € N.

Prove that 10"+ 4- 10" + 1 is divisible by 3 for n € N.
Prove that 4 - 10" +9 - 102"~ 4 5 is divisible by 99 for n € N.
Show that

1 n
Yarag - ap < — E ag.
n
k=1

Prove the Leibniz rule for f((z), where f(® is the nth derivative of f; that is, show
that

n

19 = () 1P @ e

k=0
Use induction to prove that 1 +2 422+ ... 42" =271 _ 1 for n € N.

Prove that
Ll ot o n
2 6 nn+1) n+1

for n € N.
If x is a nonnegative real number, then show that (1+x)" —1 > nz forn =0,1,2,....

Power Sets. Let X be a set. Define the power set of X, denoted P(X), to be the set
of all subsets of X. For example,

P({av b}) = {@, {a}v {b}v {av b}}

For every positive integer n, show that a set with exactly n elements has a power set
with exactly 2" elements.

Prove that the two principles of mathematical induction stated in Section 2.1 are
equivalent.

Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the
smallest natural number. Use this result to show that the Principle of Well-Ordering
implies the Principle of Mathematical Induction; that is, show that if S C N such that
1€ Sandn+1¢€S whenever n € S, then S = N.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.

For each of the following pairs of numbers a and b, calculate ged(a, b) and find integers
r and s such that ged(a,b) = ra + sb.

(a) 14 and 39 (d) 471 and 562
(b) 234 and 165 (e) 23771 and 19945
(c) 1739 and 9923 (f) —4357 and 3754

Let @ and b be nonzero integers. If there exist integers r and s such that ar + bs = 1,
show that a and b are relatively prime.

Fibonacci Numbers. The Fibonacci numbers are
1,1,2,3,5,8,13,21,....

We can define them inductively by f1 =1, fo =1, and fh12 = fn+1 + fn for n € N,
(a) Prove that f, < 2.

(b) Prove that foi1fu-1=fi+(=1)" n>2.
(¢) Prove that f, = [(1++/5)" — (1 —v/5)"]/2"V/5.
)

(d) Show that ¢ = lim, e fnir1/fn = (V5 +1)/2. The constant ¢ is known as the
golden ratio.

(e) Prove that f, and f,41 are relatively prime.

Let a and b be integers such that ged(a,b) = 1. Let r and s be integers such that
ar + bs = 1. Prove that

ged(a, s) = ged(r,b) = ged(r, s) = 1.
Let z,y € N be relatively prime. If xy is a perfect square, prove that x and y must
both be perfect squares.

Using the division algorithm, show that every perfect square is of the form 4k or 4k +1
for some nonnegative integer k.

Suppose that a, b, r, s are pairwise relatively prime and that

a® +b> =r?

a® — b = §°.

Prove that a, r, and s are odd and b is even.

Let n € N. Use the division algorithm to prove that every integer is congruent mod n
to precisely one of the integers 0,1,...,n — 1. Conclude that if r is an integer, then
there is exactly one s in Z such that 0 < s < n and [r] = [s]. Hence, the integers are
indeed partitioned by congruence mod n.

Define the least common multiple of two nonzero integers a and b, denoted by lem(a, b),
to be the nonnegative integer m such that both a and b divide m, and if @ and b divide
any other integer n, then m also divides n. Prove there exists a unique least common
multiple for any two integers a and b.

If d = ged(a, b) and m = lem(a, b), prove that dm = |ab|.
Show that lem(a, b) = ab if and only if ged(a, b) = 1.

Prove that ged(a,c) = ged(b,¢) = 1 if and only if ged(ab, c) = 1 for integers a, b, and
c.
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27.
28.
29.
30.
31.

Let a,b,c € Z. Prove that if ged(a,b) = 1 and a | be, then a | c.

Let p > 2. Prove that if 2P — 1 is prime, then p must also be prime.
Prove that there are an infinite number of primes of the form 6n 4+ 5.
Prove that there are an infinite number of primes of the form 4n — 1.

Using the fact that 2 is prime, show that there do not exist integers p and ¢ such that
p? = 2¢2. Demonstrate that therefore v/2 cannot be a rational number.

2.5 Programming Exercises

1.

The Sieve of Eratosthenes. One method of computing all of the prime numbers
less than a certain fixed positive integer N is to list all of the numbers n such that
1 < n < N. Begin by eliminating all of the multiples of 2. Next eliminate all of the
multiples of 3. Now eliminate all of the multiples of 5. Notice that 4 has already been
crossed out. Continue in this manner, noticing that we do not have to go all the way
to N; it suffices to stop at v/N. Using this method, compute all of the prime numbers
less than N = 250. We can also use this method to find all of the integers that are
relatively prime to an integer N. Simply eliminate the prime factors of IV and all of
their multiples. Using this method, find all of the numbers that are relatively prime
to N = 120. Using the Sieve of Eratosthenes, write a program that will compute all
of the primes less than an integer N.

Let N° = NU {0}. Ackermann’s function is the function A : N° x N® — N defined by
the equations

A0,y) =y +1,
A(:B +1,0) = A(x, 1),
Alz+1y+1) = Az, A(z + 1,9)).

Use this definition to compute A(3,1). Write a program to evaluate Ackermann’s
function. Modify the program to count the number of statements executed in the
program when Ackermann’s function is evaluated. How many statements are executed

in the evaluation of A(4,1)? What about A(5,1)?

Write a computer program that will implement the Euclidean algorithm. The program
should accept two positive integers a and b as input and should output ged(a,b) as
well as integers r and s such that

ged(a, b) = ra + sb.
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2.7 Sage

Many properties of the algebraic objects we will study can be determined from properties
of associated integers. And Sage has many powerful functions for analyzing integers.

Division Algorithm

The code a % b will return the remainder upon division of a by b. In other words, the
result is the unique integer r such that (1) 0 < r < b, and (2) a = bq + r for some integer
g (the quotient), as guaranteed by the Division Algorithm (Theorem 2.9). Then (a —r)/b
will equal g. For example,

r =14 % 3

r

2

q= (14 - r)/3
q

4

It is also possible to get both the quotient and remainder at the same time with the
.quo_rem() method (quotient and remainder).

4

1
3

a
b
a.quo_rem(b)

(4, 2)
A remainder of zero indicates divisibility. So (a % b) == 0@ will return True if b divides
a, and will otherwise return False.

(20 % 5) == 0
True
(17 % 4) == 0
False

The .divides() method is another option.

c =5
c.divides (20)

True



CHAPTER 2. THE INTEGERS 33

d = 4
d.divides (17)

False

Greatest Common Divisor

The greatest common divisor of a and b is obtained with the command gcd(a, b), where
in our first uses, @ and b are integers. Later, a and b can be other objects with a notion of
divisibility and “greatness,” such as polynomials. For example,

gcd (2776, 2452)

We can use the gcd command to determine if a pair of integers are relatively prime.

a = 31049
b = 2105
gcd(a, b) == 1

True

a = 3563
b = 2947
gcd(a, b) == 1

False

The command xgcd(a,b) (“eXtended GCD”) returns a triple where the first element is
the greatest common divisor of a and b (as with the gcd(a,b) command above), but the
next two elements are values of r and s such that ra 4+ sb = ged(a, b).

xgcd (633,331)

(1, -137, 262)

Portions of the triple can be extracted using [ 1(“indexing”) to access the entries of the
triple, starting with the first as number 0. For example, the following should always return
the result True, even if you change the values of a and b. Try changing the values of a and
b below, to see that the result is always True.

a = 633
b = 331
extended = xgcd(a, b)

g = extended[0]
r = extended[1]
s = extended[2]
g == rxa + S*b
True

Studying this block of code will go a long way towards helping you get the most out of
Sage’s output. Note that = is how a value is assigned to a variable, while as in the last line,
== is how we compare two items for equality.
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Primes and Factoring

The method .is_prime() will determine if an integer is prime or not.

a = 117371
a.is_prime()

True

b = 14547073
b.is_prime()

False

b == 1597 * 9109

True

The command random_prime(a, proof=True) will generate a random prime number
between 2 and a. Experiment by executing the following two compute cells several times.
(Replacing proof=True by proof=False will speed up the search, but there will be a very,
very, very small probability the result will not be prime.)

a = random_prime (10221, proof=True)
a

424729101793542195193

a.is_prime()

True

The command prime_range(a, b) returns an ordered list of all the primes from a to
b — 1, inclusive. For example,

prime_range (500, 550)

[503, 509, 521, 523, 541, 547]

The commands next_prime(a) and previous_prime(a) are other ways to get a single
prime number of a desired size. Give them a try below if you have an empty compute cell
there (as you will if you are reading in the Sage Notebook, or are reading the online version).
(The hash symbol, #, is used to indicate a “comment” line, which will not be evaluated by
Sage. So erase this line, or start on the one below it.)In addition to checking if integers are
prime or not, or generating prime numbers, Sage can also decompose any integer into its
prime factors, as described by the Fundamental Theorem of Arithmetic (Theorem 2.15).

a = 2600
a.factor ()

2*3 *x 572 % 13

So 2600 = 23 x 5% x 13 and this is the unique way to write 2600 as a product of prime
numbers (other than rearranging the order of the primes themselves in the product).
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While Sage will print a factorization nicely, it is carried internally as a list of pairs of
integers, with each pair being a base (a prime number) and an exponent (a positive integer).
Study the following carefully, as it is another good exercise in working with Sage output in
the form of lists.

a = 2600

factored = a.factor ()
first_term = factored[0]
first_term

(2, 3

second_term = factored[1]
second_term

(5, 2)

third_term = factored[2]
third_term

s, 1

first_prime = first_term[0]
first_prime

first_exponent = first_term[1]
first_exponent

The next compute cell reveals the internal version of the factorization by asking for the
actual list. And we show how you could determine exactly how many terms the factorization
has by using the length command, len().

list(factored)

[(2, 3>, (5, 2), (13, NI

len(factored)

Can you extract the next two primes, and their exponents, from a?

2.8 Sage Exercises

These exercises are about investigating basic properties of the integers, something we will
frequently do when investigating groups. Sage worksheets have extensive capabilities for
making new cells with carefully formatted text, include support for IXITEX syntax to express
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mathematics. So when a question asks for explanation or commentary, make a new cell and
communicate clearly with your audience.

1.

Use the next_prime() command to construct two different 8-digit prime numbers and
save them in variables named a and b.
Use the .is_prime() method to verify that your primes a and b are really prime.

Verify that 1 is the greatest common divisor of your two primes from the previous
exercises.

Find two integers that make a “linear combination” of your two primes equal to 1.
Include a verification of your result.

Determine a factorization into powers of primes for ¢ = 4598 037 234.

Write a compute cell that defines the same value of ¢ again, and then defines a candidate
divisor of ¢ named d. The third line of the cell should return True if and only if d is
a divisor of c. Hlustrate the use of your cell by testing your code with d = 7 and in a
new copy of the cell, testing your code with d = 11.



Groups

We begin our study of algebraic structures by investigating sets associated with single
operations that satisfy certain reasonable axioms; that is, we want to define an operation
on a set in a way that will generalize such familiar structures as the integers Z together
with the single operation of addition, or invertible 2 x 2 matrices together with the single
operation of matrix multiplication. The integers and the 2 x 2 matrices, together with their
respective single operations, are examples of algebraic structures known as groups.

The theory of groups occupies a central position in mathematics. Modern group theory
arose from an attempt to find the roots of a polynomial in terms of its coefficients. Groups
now play a central role in such areas as coding theory, counting, and the study of symmetries;
many areas of biology, chemistry, and physics have benefited from group theory.

3.1 Integer Equivalence Classes and Symmetries

Let us now investigate some mathematical structures that can be viewed as sets with single
operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applications of algebra.
In mathematics they are used in cryptography, coding theory, and the detection of errors
in identification codes.

We have already seen that two integers a and b are equivalent mod n if n divides a — b.
The integers mod n also partition Z into n different equivalence classes; we will denote the set
of these equivalence classes by Z,. Consider the integers modulo 12 and the corresponding
partition of the integers:

[0]
1] =

{...,-12,0,12,24,...},
{...,=11,1,13,25,...},
1] ={...,-1,11,23,35,...}.
When no confusion can arise, we will use 0,1,...,11 to indicate the equivalence classes

[0],[1],...,[11] respectively. We can do arithmetic on Z,,. For two integers a and b, define
addition modulo n to be (a 4+ b) (mod n); that is, the remainder when a + b is divided by

37
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n. Similarly, multiplication modulo n is defined as (ab) (mod n), the remainder when ab is
divided by n.

Example 3.1 The following examples illustrate integer arithmetic modulo n:

7+4=1 (mod5) 7-3=1 (mod 5)
3+45=0 (mod 8) 3:5=7 (mod 8)
3+4=7 (mod 12) 3-4=0 (mod 12).

In particular, notice that it is possible that the product of two nonzero numbers modulo n
can be equivalent to 0 modulo n. U

Example 3.2 Most, but not all, of the usual laws of arithmetic hold for addition and
multiplication in Z,,. For instance, it is not necessarily true that there is a multiplicative
inverse. Consider the multiplication table for Zg in Figure 3.3. Notice that 2, 4, and 6 do
not have multiplicative inverses; that is, for n = 2, 4, or 6, there is no integer k such that
kn =1 (mod 8).

N O O W N = O

O O O O O O O OO
N O U W N O
DN OO RN O
TN N == O W oW
= O b= O = O = Oi-
W O =N Ot OOt
N = OO O N O OO
= N Wk O N O

Figure 3.3 Multiplication table for Zg
O

Proposition 3.4 Let Z,, be the set of equivalence classes of the integers mod n and a,b, c €
/e

1. Addition and multiplication are commutative:

a+b=b+a (modn)
ab=ba (mod n).

2. Addition and multiplication are associative:

(a+b)+c=a+(b+c) (modn)
(ab)c = a(bc) (mod n).

3. There are both additive and multiplicative identities:

a+0=a (mod n)

a-1=a (modn).

4. Multiplication distributes over addition:

a(b+c) =ab+ac (mod n).
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5. For every integer a there is an additive inverse —a:

a+(—a)=0 (mod n).

6. Leta be a nonzero integer. Then ged(a,n) = 1 if and only if there exists a multiplicative
inverse b for a (mod n); that is, a nonzero integer b such that

ab=1 (mod n).
ProOF. We will prove (1) and (6) and leave the remaining properties to be proven in the
exercises.

(1) Addition and multiplication are commutative modulo n since the remainder of a + b
divided by n is the same as the remainder of b + a divided by n.

(6) Suppose that gcd(a,n) = 1. Then there exist integers r and s such that ar +ns = 1.
Since ns = 1 — ar, it must be the case that ar = 1 (mod n). Letting b be the equivalence
class of r, ab=1 (mod n).

Conversely, suppose that there exists an integer b such that ab = 1 (mod n). Then n
divides ab — 1, so there is an integer k such that ab — nk = 1. Let d = ged(a,n). Since d
divides ab — nk, d must also divide 1; hence, d = 1. |
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Symmetries

A B tdentity 4 B
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D C D C

180°

rotation

A

A B B A
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4 B reflection D ¢
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7

horizontal axis

D C A B

Figure 3.5 Rigid motions of a rectangle

A symmetry of a geometric figure is a rearrangement of the figure preserving the arrange-
ment of its sides and vertices as well as its distances and angles. A map from the plane
to itself preserving the symmetry of an object is called a rigid motion. For example, if we
look at the rectangle in Figure 3.5, it is easy to see that a rotation of 180° or 360° returns
a rectangle in the plane with the same orientation as the original rectangle and the same
relationship among the vertices. A reflection of the rectangle across either the vertical axis
or the horizontal axis can also be seen to be a symmetry. However, a 90° rotation in either
direction cannot be a symmetry unless the rectangle is a square.
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Sy

Q

A

d =
= (4
_ (A
P=1\pg
(A
p2 = C
(A
=14
(A
H2 = C
<A
=1\ g

0

Q

ey

41

Let us find the symmetries of the equilateral triangle AABC. To find a symmetry of
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ANABC, we must first examine the permutations of the vertices A, B, and C and then ask
if a permutation extends to a symmetry of the triangle. Recall that a permutation of a set
S is a one-to-one and onto map w : S — S. The three vertices have 3! = 6 permutations,
so the triangle has at most six symmetries. To see that there are six permutations, observe
there are three different possibilities for the first vertex, and two for the second, and the
remaining vertex is determined by the placement of the first two. So we have 3-2-1=3! =6
different arrangements. To denote the permutation of the vertices of an equilateral triangle
that sends A to B, B to C, and C to A, we write the array

A B C
(2 ¢ %)
Notice that this particular permutation corresponds to the rigid motion of rotating the
triangle by 120° in a clockwise direction. In fact, every permutation gives rise to a symmetry
of the triangle. All of these symmetries are shown in Figure 3.6.
A natural question to ask is what happens if one motion of the triangle AABC is
followed by another. Which symmetry is pip1; that is, what happens when we do the

permutation p; and then the permutation p1? Remember that we are composing functions
here. Although we usually multiply left to right, we compose functions right to left. We have

=
=
=
Sy
I
=
[
s
=
Sy
I
=
a8
I
W

This is the same symmetry as ps. Suppose we do these motions in the opposite order,
p1 then py. It is easy to determine that this is the same as the symmetry ps; hence,
p1p1 # p1p1. A multiplication table for the symmetries of an equilateral triangle AABC is
given in Figure 3.7.

Notice that in the multiplication table for the symmetries of an equilateral triangle, for
every motion of the triangle « there is another motion § such that af = id; that is, for
every motion there is another motion that takes the triangle back to its original orientation.

o |id p1 p2 1 p2 p3
id|id p1 p2 w1 p2 w3
pr|pr op2 id pz opr o p2
p2 | p2 id p1 op2 pz om
pu| o g2 opg idoproope
po | p2 p3 1o op2 id p
M3 | 13 1 g2 op1 op2 id

Figure 3.7 Symmetries of an equilateral triangle

3.2 Definitions and Examples

The integers mod n and the symmetries of a triangle or a rectangle are examples of groups.
A binary operation or law of composition on a set G is a function G x G — G that assigns
to each pair (a,b) € G x G a unique element a o b, or ab in G, called the composition of
a and b. A group (G,o) is a set G together with a law of composition (a,b) + a o b that
satisfies the following axioms.
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e The law of composition is associative. That is,
(aob)oc=ao(boc)
for a,b,c € G.

e There exists an element e € G, called the identity element, such that for any element

a€e€dG
eoa=aoe=a.
« For each element a € G, there exists an inverse element in G, denoted by a~!, such
that
-1 _ -1 _
aoa " =a oa=c¢e

A group GG with the property that a ob = boa for all a,b € G is called abelian or com-
mutative. Groups not satisfying this property are said to be nonabelian or noncommutative.

Example 3.8 The integers Z = {...,—1,0,1,2,...} form a group under the operation of
addition. The binary operation on two integers m,n € Z is just their sum. Since the integers
under addition already have a well-established notation, we will use the operator + instead
of o; that is, we shall write m + n instead of m on. The identity is 0, and the inverse of
n € Z is written as —n instead of n~!. Notice that the set of integers under addition have
the additional property that m 4+ n = n + m and therefore form an abelian group. O

Most of the time we will write ab instead of a o b; however, if the group already has a
natural operation such as addition in the integers, we will use that operation. That is, if
we are adding two integers, we still write m + n, —n for the inverse, and 0 for the identity
as usual. We also write m — n instead of m + (—n).

It is often convenient to describe a group in terms of an addition or multiplication table.
Such a table is called a Cayley table.

Example 3.9 The integers mod n form a group under addition modulo n. Consider Zs,
consisting of the equivalence classes of the integers 0, 1, 2, 3, and 4. We define the group
operation on Zs by modular addition. We write the binary operation on the group additively;
that is, we write m + n. The element 0 is the identity of the group and each element in Zg
has an inverse. For instance, 24+ 3 = 3 + 2 = 0. Figure 3.10 is a Cayley table for Zs. By
Proposition 3.4, Z, = {0,1,...,n — 1} is a group under the binary operation of addition
mod n.

B~ w N O+
B ow o = oo
O B W N
— O kW NN
N O~ O R W w
W N = O

Figure 3.10 Cayley table for (Zs,+)
([

Example 3.11 Not every set with a binary operation is a group. For example, if we let
modular multiplication be the binary operation on Z,, then Z, fails to be a group. The
element 1 acts as a group identity since 1 -k = k-1 = k for any k € Z,; however, a
multiplicative inverse for 0 does not exist since 0-k = k-0 = 0 for every k in Z,. Even if
we consider the set Z,, \ {0}, we still may not have a group. For instance, let 2 € Zg. Then
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2 has no multiplicative inverse since

2=2 5-2=4.

By Proposition 3.4, every nonzero k£ does have an inverse in Z, if k is relatively prime to
n. Denote the set of all such nonzero elements in Z,, by U(n). Then U(n) is a group called
the group of units of Z,,. Figure 3.12 is a Cayley table for the group U(8).

1 3 5 7
111 3 7
313 1 75
55 7 1 3
7|7 5 3 1
Figure 3.12 Multiplication table for U(8)

O

Example 3.13 The symmetries of an equilateral triangle described in Section 3.1 form
a nonabelian group. As we observed, it is not necessarily true that af = fa for two
symmetries « and (. Using Figure 3.7, which is a Cayley table for this group, we can easily
check that the symmetries of an equilateral triangle are indeed a group. We will denote this
group by either S3 or Ds, for reasons that will be explained later. O

Example 3.14 We use My (R) to denote the set of all 2 x 2 matrices. Let GL2(R) be the
subset of My(R) consisting of invertible matrices; that is, a matrix

a b
A pu—
(¢ 2
is in GLy(R) if there exists a matrix A~! such that AA~! = A='A = I, where I is the 2 x 2
identity matrix. For A to have an inverse is equivalent to requiring that the determinant of

A be nonzero; that is, det A = ad — bec # 0. The set of invertible matrices forms a group
called the general linear group. The identity of the group is the identity matrix

()

ad —bc \—c a
The product of two invertible matrices is again invertible. Matrix multiplication is associa-

tive, satisfying the other group axiom. For matrices it is not true in general that AB = BA;
hence, GL2(R) is another example of a nonabelian group. O

Example 3.15 Let
1 10 j 0 1
0 1 -1 0

The inverse of A € GLy(R) is
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0 ¢ ¢ 0
J = K= )
G =G
where i = —1. Then the relations I? = J? = K? = -1, IJ = K, JK = I, KI = J,

JI = —K, KJ = —I, and IK = —J hold. The set Qs = {£1,+[,+J,+K} is a group
called the quaternion group. Notice that (Jg is noncommutative. U
Example 3.16 Let C* be the set of nonzero complex numbers. Under the operation of

multiplication C* forms a group. The identity is 1. If z = a + bi is a nonzero complex
number, then

1 a—bi
 a? + b2
is the inverse of z. It is easy to see that the remaining group axioms hold. ]

A group is finite, or has finite order, if it contains a finite number of elements; otherwise,
the group is said to be infinite or to have infinite order. The order of a finite group is the
number of elements that it contains. If G is a group containing n elements, we write
|G| = n. The group Zs is a finite group of order 5; the integers Z form an infinite group
under addition, and we sometimes write |Z| = co.

Basic Properties of Groups

Proposition 3.17 The identity element in a group G is unique; that is, there exists only
one element e € G such that eg = ge = g for all g € G.
PROOF. Suppose that e and e’ are both identities in G. Then eg = ge = gand €'g = g¢’ = g
for all g € G. We need to show that e = ¢’. If we think of e as the identity, then ee’ = ¢’;
but if €’ is the identity, then ee/ = e. Combining these two equations, we have e = ee/ = ¢’.
|
Inverses in a group are also unique. If ¢’ and ¢” are both inverses of an element g
in a group G, then g¢’ = ¢'g = e and g9” = ¢’g = e. We want to show that ¢’ = ¢”,
but ¢ = g'e = ¢'(99") = (¢'9)g" = eg” = ¢g’. We summarize this fact in the following
proposition.

Proposition 3.18 If g is any element in a group G, then the inverse of g, denoted by g~ !,

18 unique.

Proposition 3.19 Let G be a group. If a,b € G, then (ab)™' =b"ta™1.
PRrOOF. Let a,b € G. Then abb~'a~! = aea™! = aa™! = e. Similarly, b~'a"'ab = e. But
by the previous proposition, inverses are unique; hence, (ab)™' = b~1a71. |

Proposition 3.20 Let G be a group. For any a € G, (a™")™! = a.

PROOF. Observe that a=!(a=!)~! = e. Consequently, multiplying both sides of this equa-
tion by a, we have

(aHt=elaHt=aa(a ) =ae=a.

[ |

It makes sense to write equations with group elements and group operations. If a¢ and b

are two elements in a group G, does there exist an element = € G such that ax = b? If such

an x does exist, is it unique? The following proposition answers both of these questions
positively.

Proposition 3.21 Let G be a group and a and b be any two elements in G. Then the
equations ax = b and ra = b have unique solutions in G.
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PROOF. Suppose that ax = b. We must show that such an x exists. We can multiply both
sides of ax = b by a™! to find x = ex = atax = a~'b.

To show uniqueness, suppose that x; and xo are both solutions of ax = b; then ax; =
b= axs. So x1 = a tar; = a laxs = x9. The proof for the existence and uniqueness of
the solution of xa = b is similar. |
Proposition 3.22 If G is a group and a,b,c € G, then ba = ca implies b = ¢ and ab = ac
implies b = c.

This proposition tells us that the right and left cancellation laws are true in groups. We
leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary algebra. If G is a
group and g € G, then we define ¢° = e. For n € N, we define

9"=9-9-9

n times

and

n times

Theorem 3.23 In a group, the usual laws of exponents hold; that is, for all g,h € G,
1. g™g"™ = g™ for all m,n € Z;
2. (g™)" = g™ for all m,n € Z;

3. (gh)" = (h"tg=1)™™" for all n € Z. Furthermore, if G is abelian, then (gh)™ = g"h™.

We will leave the proof of this theorem as an exercise. Notice that (gh)™ # ¢"h"™ in
general, since the group may not be abelian. If the group is Z or Z,, we write the group
operation additively and the exponential operation multiplicatively; that is, we write ng
instead of g". The laws of exponents now become

1. mg+ng = (m+n)g for all m,n € Z;
2. m(ng) = (mn)g for all m,n € Z;
3. m(g + h) = mg + mh for all n € Z.

It is important to realize that the last statement can be made only because Z and Z,
are commutative groups.

[ | Historical Note [ |

Although the first clear axiomatic definition of a group was not given until the late 1800s,
group-theoretic methods had been employed before this time in the development of many
areas of mathematics, including geometry and the theory of algebraic equations.
Joseph-Louis Lagrange used group-theoretic methods in a 1770-1771 memoir to study meth-
ods of solving polynomial equations. Later, Evariste Galois (1811-1832) succeeded in devel-
oping the mathematics necessary to determine exactly which polynomial equations could be
solved in terms of the coefficients of the polynomial. Galois’ primary tool was group theory.
The study of geometry was revolutionized in 1872 when Felix Klein proposed that geo-
metric spaces should be studied by examining those properties that are invariant under
a transformation of the space. Sophus Lie, a contemporary of Klein, used group theory
to study solutions of partial differential equations. One of the first modern treatments of
group theory appeared in William Burnside’s The Theory of Groups of Finite Order [1],
first published in 1897.
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3.3 Subgroups

Definitions and Examples

Sometimes we wish to investigate smaller groups sitting inside a larger group. The set of
even integers 27 = {...,—2,0,2,4,...} is a group under the operation of addition. This
smaller group sits naturally inside of the group of integers under addition. We define a
subgroup H of a group G to be a subset H of G such that when the group operation of
G is restricted to H, H is a group in its own right. Observe that every group G with at
least two elements will always have at least two subgroups, the subgroup consisting of the
identity element alone and the entire group itself. The subgroup H = {e} of a group G
is called the trivial subgroup. A subgroup that is a proper subset of G is called a proper
subgroup. In many of the examples that we have investigated up to this point, there exist
other subgroups besides the trivial and improper subgroups.

Example 3.24 Consider the set of nonzero real numbers, R*, with the group operation of
multiplication. The identity of this group is 1 and the inverse of any element a € R* is just
1/a. We will show that

Q* = {p/q : pand g are nonzero integers}

is a subgroup of R*. The identity of R* is 1; however, 1 = 1/1 is the quotient of two nonzero
integers. Hence, the identity of R* is in Q*. Given two elements in Q*, say p/q and /s,
their product pr/gs is also in Q*. The inverse of any element p/q € Q* is again in Q* since
(p/q)~! = q/p. Since multiplication in R* is associative, multiplication in Q* is associative.

O

Example 3.25 Recall that C* is the multiplicative group of nonzero complex numbers. Let
H ={1,-1,i,—i}. Then H is a subgroup of C*. It is quite easy to verify that H is a group
under multiplication and that H C C*. ([

Example 3.26 Let SL2(R) be the subset of GL2(R) consisting of matrices of determinant

one; that iS, a matrix
l <(1 b)
c d

is in SL2(R) exactly when ad — be = 1. To show that SLy(R) is a subgroup of the general
linear group, we must show that it is a group under matrix multiplication. The 2 x 2 identity
matrix is in SLy(R), as is the inverse of the matrix A:

At = d —b .
—c a
It remains to show that multiplication is closed; that is, that the product of two matrices

of determinant one also has determinant one. We will leave this task as an exercise. The
group SLy(R) is called the special linear group. O

Example 3.27 It is important to realize that a subset H of a group G can be a group
without being a subgroup of G. For H to be a subgroup of G, it must inherit the binary
operation of G. The set of all 2 x 2 matrices, My(R), forms a group under the operation of
addition. The 2 x 2 general linear group is a subset of My(R) and is a group under matrix
multiplication, but it is not a subgroup of M (R). If we add two invertible matrices, we do
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not necessarily obtain another invertible matrix. Observe that

b0 %)=

but the zero matrix is not in GL2(R). O

Example 3.28 One way of telling whether or not two groups are the same is by examining
their subgroups. Other than the trivial subgroup and the group itself, the group Z4 has
a single subgroup consisting of the elements 0 and 2. From the group Zs, we can form
another group of four elements as follows. As a set this group is Zs X Zo. We perform the
group operation coordinatewise; that is, (a,b) + (¢,d) = (a + ¢,b + d). Figure 3.29 is an
addition table for Zs X Zso. Since there are three nontrivial proper subgroups of Zo X Zs,
H, ={(0,0),(0,1)}, H, = {(0,0),(1,0)}, and Hs = {(0,0),(1,1)}, Z4 and Zy X Zs must be
different groups.

~—~~ |

_ =0 OO
— O Rk OO

~— — — — |~ —

Figure 3.29 Addition table for Zs x Zs

Some Subgroup Theorems

Let us examine some criteria for determining exactly when a subset of a group is a subgroup.

Proposition 3.30 A subset H of G is a subgroup if and only if it satisfies the following
conditions.

1. The identity e of G is in H.
2. If hi,ho € H, then hihs € H.

3. Ifhe€ H, then h~' € H.
PRrROOF. First suppose that H is a subgroup of G. W